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The simplest plane problem connected with the hydrodynamics of wave motion 

of ships is dealt with in this article, namely the oscillation of a plate 

floating vertically in a disturbed heavy liquid of infinite depth. The 

problem is solved in “closed” form and the solution is obtained by the 

same methods as employed in the case of pure diffraction [ 11. Exact values 

are obtained for general coefficients of damping and mass coupling, in 

terms of cylindrical functions. Formulas are derived giving mean values 

of the hydrodynamic forces over a cycle of oscillation in the form of a 

quadratic approximation. 

1. Method of solution. We deal with a dense incompressible liquid 

of infinite depth on which there is a regular system of travelling waves 

determined by the following velocity potential; 

(DO (y, 2, t) = - icro exp iid - v (z + iy)] 

where j = \/ - 1, u is the frequency of oscillation, ‘Jr, is the wave 
height, v = 0*/g, the wave number, g is t!le acceleration due to gravity, 

and c = g/u, the phase velocity. Both here, and in the complex expressions 

to fol low containing exp jot, only the real part will Le considered. 

*T--y 
Fig. 1. 

Now let us assume that the vertical floating plate (Fig. 1) performs 

small harmonic oscillations at frequency u in the disturbed liquid with 
horizontal and angular velocities equal, respectively, to V= v exp jut 

and R = w exp jot. Also let cf, = ((t + q$,) exp jot be the velocity potential 
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Radiation and diffraction of surface waves from a vertical plate 771 

of the whole wave motion in the liquid, where c&, =jcr,, x exp( - Y(Z + jyl). 

Then we have the following boundary conditions for ~~eterminin~ the har- 

monic function #4y, z); 

g+v’p=o for z=O 

ag, - = u + wz + arQe-*= 2 
aY 

for y=O and 0 &z<‘r (1.2) 

To these we add the further radiation condition for the motion pro- 

ceeding in both directions from each face of the plate; 

'p(y, z} = iB&e--v(z*j@) for y-*-&o0 (1.3) 

A further condition is that of the boundedness of the derivatives of 

C$ within the region occupied by the fluid, and also their tending to zero 

for t -, W. B&represents complex quantities in j which have yet to be 

determined. Note also that the function q5 can also !,e represented in a 

form suitable for computation, namely; 

+a 1 04 89 -=, 
3Y ay- ‘G 

= arOe-YL Por y=Oand O<tGT (1.4) 

where C& ant1 & are functions of the radiation which represent the simplest 

forms of wave motion with plate oscillations of unit velocity amplttude, 

4 is a dispersion function which gives a solution to the diffraction 

problem &d R," (a = 2, 4, 7) are asymptotic characteristics of the radi- 

ation and dispersion functions which determine the complex amplitudes of 

the radiated and the disperse<1 waves. 

We now introduce the function w = $+ it/l of the complex variable 

x = z + iy,where the operator i = \/- 1 is not interchangeable with 

operator j. Using this function, condition (1.11 takes the following form: 

n t\ ( !I + Y/i) = 0 for z=iy 

on the basis of which we continue the function dw/dx + VW into the upper 
half plane and from this we find that the given function is holomorphic 
and single valued outside the section f-T, T) on the z-axis; at points 
symnetrlcal with respect to the y-axis Re(dw/dx + VW 1 takes on values 
numerically equal but opposite in sign, while Im(dw/dx + ~UJ 1 retains the 
same values at these pnints. Moreover, in view of the fact that ~S'qS,/ay 
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and + are continuous when going through the section (0,. T) on the z-axis, 

Im (d~/d~ + VW ) is also continuous there. 'Ihus 

\ (g+vtu)dz=O 
b. 

(1.6) 

where Co is a contour which encloses the section C-T, T). Rearing in 

mind equation (1.6) we see that in the neighbourhood of the point at in- 

finity the following expansion is valid: 

dw 
-+vw= 

icl 
dx 3+3-i_.. (1.7) 

where cl, c2, . . . are real constants with respect to i. 

Now let us take a look at another function f(x) = r + is which is re- 

lated to W(X) through the differential equation 

+=&XV (1.8) 

From (1.8) we obtain 
_,=$_v(ii 

and because at the section (0, T) 

@P a+ -_ 
&j = aa = v +- 02 + urOe-vz 

+ = cjl - v (2 - T) - T (2” - T2) +.y (e-vz - cvT) 

where $I is the value of $ at the point z = T, for s on the section 

(0, TI we have the condition 

--s=A+Bz+Cz2 (1.9) 

A = uroe-vT - Y+~ + v (1 - VT) - $ VT’%, B = 0 + VW, c = + YO (1.10) 

In accordance with analytical extrapolation, from condition (1.5) the 

value of s at (0, -Tf should be made equal to the corresponding values 

of s at (0, 7'). The function f(z), which satisfies equations (1.6) and 

(1.91, is determined in the form [Zf : 

Fig. 2. 
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'I'aking into consideration the nature of function s on the section 

(-T, T), and carrying out the calculation, we find 

From the differential 

12BT ‘x , . 
= Jfxa-Ta 

1-;~+T%ctg Jfs&a + > 
+ iC 

( 
>YII--z? 

1 
(1.11) 

equation (1.8) we find 

x 

w (2) = e-“(A, + iAa + \ f (5) eyx d5) (1.12) 

--a0 

where R and A, are integration constants; the contour of integration 

(- 00, A is shown in Fig. 2. It can be easily seen that 

x 

lim f(z)eYrdz = 0, 
s 

R-L 

\ j(z)evZd2= i f(z)e”Xd2 
- ios 

where L is a quadrant'of radius R (Fig. 2). If we make use of the last 

of these equations we get the following asymptotic relations 

w(5)= (A,+ iA,)e-vX as I+ io0, w(5)~(B1+iB,)e-vX as z+--i00 

where B, and B, are determined from the following relation 

-Am 

B1+iB,=A,+iA,+ \ j(z)evXdz 
ice 

If, in this formula, we replace the contour of integration by contour 
C, which encloses the section (-T, T), and if we reduce that contour C, 

to the section we will have 

B,+iB,=A,+iA,+2 ir+evzdz 
-T 

(1.13) 

where r is the value of the function r when approaching the section 

(-T, T) from the side y > 0. 

In order to 

wave system we 

Ihen, if in 

satisfy condition (1.3) for the radiation of the outgoing 

should put 

4 = jAl = jB+, BI=--jB,= jB_ (1.14) 

(1.13) we replace i by j and then by-j we get 
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jB, = T [ r+evz dz 
-T 

(1.15) 

From relation (1.11) we get 

If we insert this expression into (1.15) and we make use of the inte- 

gral representation of Bessel Functions of imaginary argument, we find 

P,=T[ ATlrI,(p) + Tbz + cq (p = v3') (1.17) 

(1.18) 

-m 

.T II In these expressions I,,(p) is a Bessel Function 

of imaginary argument 

0 Y 
1 

In(p)= I*n i (I- G)n-‘i*e@udu 
jTC(2n-I)!1 

z-i0, z+iO 

-1 

t 

k ; 

. 1 Ir 
I_ J 

__ . 

; = 1, Wb 
s 

(1.19) z 

-1 0 Fig. 3. 

we 

we 

P 

The expression for A contains an unknown constant !"I' To determine it 

put x = z in (1.12) and Lear in mind the expressions (1.14) and (1.15); 

then obtain 

z T z 

+ i$ = e-v= 
[ s + r+evz dz + iB+ + i 

s 
sevz dz + i sevz dz + 

5 
T -T T 

where the plus sign denotes approach of the section (0, T) from the side 

y > 0 and the minus sign corresponds to y < 0. (Fig. 3). In (1.20) if we 

put z = T and separate the imaginary part we have 

e"(Jl = B, + [ seYzdz+ q, 

-T 

-q=-i 
s 

f (x) evXdx (1.21) 

-T -03 

where 7 is a real constant. Taking into account the fact that for z < -T 

the equation(z* - T*)l'* = - (I ,* - T* 1 ) ‘I2 holds and if we make use of 

the integral representation of the modified Ilankel functions 
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m 1 
n 

G(r) = (2ny1)1! e--cr”w - 1) s n- - 

2du 
1 

we find the following for 7 

rl=AT K,(P)-- ( 
““) +~B~~[Kl(p)-~(l +p)e-p-/ 

P 

+ & + + Kl (11) - $K &I-’ (t’)] 1- 

+CTJ[(f+~)K,(I*)+tK,(P)--((I*2+2~+2)] (1.22) 

(V (P) = [ h-0 (P) dP) 

‘Ihus, making use of (1.9), (1.10,4 (1.17), (1.21) and (1.22) we get 

the following expression for the constant I)~ 

$1 __ ‘;’ (1 “1 ) , 2BTz bl ‘, iba I CT3 bs ‘, ibt 

a = a1 + i% = r [K, (p) + sill @)I, 

A, = or,,e-w + v (1 - p) - $ pTo 

(1.23) 

(1.24) 

(1.25) 

63 = ($ + g> RI (I4 + + K, (4 - f (r” - 2r -t- 2) (1.26) 

‘Ihe expressions (1.10) and (1.23) fully determine constant A, for 
which we have 

A _z f ‘A,@ 
I 

- !y (b, _I- ib2) - CpT2 (A3 + jb,)] (1.27) 

Now inserting the values of constants A, R anal C from (1.10) and (1.24) 
to (1.27) into (1.17) and, bearing in mind the identity 

. 1, (t”) K, (II) f- K,(P) 11 (P) = _:- (1.28) 

we find the final formulas for the asymptotic characteristics RI ,k of the 
functions of rarliation and dispersion: 

B,* zzz 4.. xaroTf1 (r ) (1.29) 

- - r [XII (r) -SKI @)I 
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A= 2 111 (I4 + Ll (IdI, Ll (I4 = + [lo-’ (t”) Ii’1 (p) + K)-’ (1”) 11 (p) - 1 I 

We will demonstrate that L,(p) is a first order Struve Function 
imaginary argument. Actually, it is easily established from (1.30) 

g$++d$-(l++JL1=$ L,(O)=O, (;+),,=o 

(1.30) 

of 

that 

The Struve’ Function, with the initial conditions indicated, satisfies 
this same equation, and has the following integral representation [ 31 

Thus the expression for S, can also be represented in the form 

(1.31) 

(1.32) 

let us establish one more relation for the first order Struve function 

L,(p) determined with the help of expression [ 31 

L,(p) = pi= 
0 

(1.33) 

From (1.33) and (1.31) we have 

L,(p) = all.+ ~M+$ 
0 

Inserting expression (1.30) and integrating by parts, we find 

La @) = - ; [Jo-’ (t”) Ko (i”) - J&L’ (IL) 10 &)I (1.34) 

2. Linear expressions for the hydrodynamic forces. We will 
now work out the total hydrodynamic forces which act on the plate using 

the solutionwe have obtained to the problem in linear-wave theory. let 

Y represent the resultant of the hydrodynamic forces and let I!! be the 
resultant moment about the origin, we 

T 

Y=\(P_-P+)dZ, 
0 

where p_ is the pressure on the plate 
that from the side y > 0. Pressure in 

then have the formulas 

T 

M = 2 (p--p+)dz s (2-l) 
0 

acting at the side y < 0 and p+ is 
the liquid is determined with the 
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aid of the following linearized expression where p 

p--p0 = -picJ(P+ 'PO)"+ + pgz 

where p. is the atmospheric pressure and p is the density 
Making use of these expressions and of (1.20) we find 

I 

p_ - p+ = pja (C+J + - cp_) e+f = 2pjoej~~-VZ 
s 

r+evz dz 

T 

Now putting (2.2) into (2.1) and integrating by parts, 

of the liquid. 

(2.2) 

we then get 

Y “, pj&t [ r+ (e= - 1) dz M = - + pjaejaf f r, ( “‘* F ’ =-- ---_ dz (2.3) ) 

0 0 

From (1.16) and (2.3) we find the final expressions 

Y= - _$ p jae jet’ ( PAS, + ; BTYB + CT2Yc) 

M= - y p jcej*t (A (S1 - $) + p BTM, + CTaMc) 

'lhe following quantities define YB, Yc, MB and ,Uc : 

YB =~&-~s,+-+s,-1+.+, 

-so=\ 
0 

Making 

MB = s, - $ - -$ so _I- -$so-l + $ 

MC =(++~)sl-~so+&~ 

(2.4) 

(2.5) 

e@” du 
- = 5 (I, (t”) + L, (r_)), 
JfF-2 

use of the values of constants A, B and C determined from 

(1.101, (1.18) and (1.24) to (1.27), we can then put (2.4) in a form 

suitable for calculation: 

Y=Y,fL, M=M,+M, P-6) 

where Y and M are the disturbing force and its moment respectively 

caused y the & 8. Iffraction of the travelling waves round the plate 

Y, = -2pgroTZII(P)~irl(P) ejot, sl-l’!x 
(2.7) 

MB 7 - 2pgroTa 
P I”11 (PI - iK1 (r)J 

eiol 

while Yu and Mu represent the hydrodynamic force and its moment caused by 
radiation of waves in the heavy liquid due to horizontal and rotational 
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oscillations of-the plate: 

yu = - p.22 g - h,2V - p24 dg - A,& 

Mu= - p42 g - h,,V - p44dg - h,,Q 

(V = vej”t, L2 = oejat) (2.8) 

In this expression Xnln and pnM are generalized damping and mass 

coupling coefficients, depending on the dimensionless frequency parameter 

P = o’T/~. W e 1 lave the following expressions for these coefficients 

(2.9) ps2 - & A,, = 2pTZ [!$ ((1 - p) ep - ‘$ (b, + jb2)) + + Y”j 

Pl2 - c id2 = 2pT3 [i MB + ” -ii ‘4x ((1 - p) efi - y (b, + jb,))] (2.11) 

pr4 - ; h,, = 2 p L~~M~+$M~--- s1-a”4n ($eP+ T4 ‘A 

+ f @I -I- I32) + $(k9 + Iw)j (2.12) 

lJsing expressions (1.28) and (1.30) we obtain the final formulas: 

A,, = 4poT2 Sl2 

naJ12 (~1 + K? (~1 ' 
h,, = 4poT4 (S1- ‘l,xP 

P(,211B(tL) +KP(r,)) 
(2.13) 

h,, = Al2 = 4p5T3 St (SI - vdq 
I* (x21P (~1 + K12 (I*)) 

(2.14) 

4PT2 1 
IJ.22 = - x L 

_-_p,+ L/0-1-_ Sir 

2 P (~~112 (~1 +KP (~1) ] 
(2.15) 

4pTS x 
tL24 = 7 

I 
G + k -+o .-I- f&P- ,2(~$y;y$; (J (2.16) 

4pT9 x 
p42 =.y 

1 
E + & +0 +~~O-i-,2(n:$;)ylufi &))] (2.17) 

4pT4 1 7i 
P44 -:= F 

1 
---- 
&2 --~-(-$+&)s,+~&-~- 

I& 

__ (S1--'~4x)(r-'I'-_('~rn)r*yz) 

1 

(2.18) 

r2 (~~11~ (I*) + K12 (1111 

In these expressions r1 TO and y2 refer to the quantities 

r = r1- I*rz- + EKl ([A)! 

2 
72 = n IO(P_)I 

r 
1 (PI-h 0 &>A ii= 

~21"-'(p)Il (r> - KO-'wKl (P) (2.19) 

7 
1 t ro = 112s,r2- t*so("21,2(P) + K12(f*)) 
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Expressions (2.16) and (2.17) differ in external appearance. Actually 

it is easy to demonstrate, using (1.281, (1.301, (1.34) and the last of 

(2.51, that r0 = r, Thus, direct calculations for this particular problem 
correspond to the general law of tensor symnetry of the damping and mass 

coupling coefficients [ 41 . 

In accordance with general theory the generalized damping coefficients 

are expressed through the asymptotic characteristics of the Bm* radiation 

function in the following form [ 51 : 

h. nm.= + pa Re (Bn+Bm+ + B,-En-) (2.20) 

which has been obtained from energy considerations, and lines on top of 

the letters denote transition to the cohjugate complex value with res- 

pect to the imaginary j. If we put the expression for B * from (1.29) 
into (2.20) we get relations which are identical to (2.13) and (2.14). 

Finally, it is well known that the disturbing forces and moments are 

fully determined by the radiation function for any arbitrarily chosen 

system of diffracting waves, and, for the case of travelling waves these 

forces and moments are expressed only through the asymptotic character- 
istics of the radiation functions [ 6. ] . For waves travelling in the 
direction of the y-axis, with the z-axis pointing vertically downwards, 

we have the formulas 

Eeg = pgroB2-ejot, Mg = pgr,B,-ejo’ (2.21) 

which, because of (1.29), coincide with (2.7). 

‘lhe results obtained here, therefore, can be seen to be fully con- 

sistent with the three laws in general hydrodynamic wave theory applied 
to ships. The establishment of this correspondence is closely associated 

with the new relations (I. 30) and (1.34) for the Struve Functions L, (~1 

and L (~1. Note also that it follows from the general theory [ 4,5] that 

rnn(Oj > P nn(_m 1. In particular from formula (2.15) we have 

~22 = ; P2, I*.22 (m) = +pl” or 1122 (0) / I*22 (m) =; 

3. Mean values of the hydrodynamic forces in quadratic 
approximation. It has been shown [ 71 that a solution of a problem 

based on linear wave theory can be used for calculating mean values of 
non-linear characteristics in quadratic approximation over a period of 
oscillation, and, in particular, for calculating mean values of hydro- 
dynamic forces and moments. In this case the pressure should be 
represented by the full expression 
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(3-l) 

while in formulas (2.1) the lower limit of integration should be taken 

from the disturbed level of the liquid, i.e. 

T T T T 

Y = p_dz - p+dz, s s M= zp_dz- c s ZP, dz 
G- c+ i- t;+ 

where 5, represents the increase in height of the disturbed liquid when 

approaching the plate respectively from the sides y > 0 and y > 0. In 

the expression for M the lower limit of integration can be taken as zero 

because the corresponding integrals within the limits zero to 5, give 

terms of the third order; thus, retaining only terms of the second order, 

we have 

Y = Y, +Y, (3.2) 

Yi'i(p--p+)dz, Y, = 's* p+dz_ - f p_dz, ilil =\z(p_-p+)dz 
0 0 0 0 

For subsequent calculation of mean values over a period of oscilla- 

tion T = 277/u, we will make use of the rule 

1++ 

(uv)* = $-Re(a;) (3.3) 

where IL and v are functions of time by virtue of the exponential time 

multiplier exp. jot, If we make use of this rule and expression (3.1) we 

get 

Yr*=$-pj(V(D+VG+--vm_Vm,dz 

0 

T 

M’=$p\ z(vD+.viij+-V@_J%_)dz 

0 

The velocity potential @ (y, 2, t) comprises the sum of the velocity 

potential of the approaching waves @, = - jcr,, exp [jot - v(.z + jy)l and 
the velocity potential of the disturbed liquid motion Q(y, z) exp jot, 
while the values of the functions q5 and G'+/r?z on both sides of the 

section (0, T) are identical in magnitude but opposite in sign, and the 

values of a+/dy are the same. 

Making use of this fact, we get 
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T T 

Y,' =.par,Im 2 e-YZdz, 
s s 

as, M’=pv,, Im z+e-vZd2 
az (3.4) 

0 0 

For calculating Y2 it is sufficient to determine the pressure in the 

liquid by means of the linearized expressions 

and, within the limits of integration of Y7 we can replace Q(O, z) and 

+,(O, z) by their values at point z = 0. Bearing this in mind, we obtain 

Y,*= p3ro Imcp+(O, 0) 

Thus for the average lateral force we have 
T 

Y'= pavr, Im cp+e-+zdz 
s 
0 

If we now insert the value of c$+ from (1.20) and take into consider- 

ation (1.151, we. finally end up with the simple expression 

Y' = $paro Re B, (3.5) 

This expression can be obtained by another method which is derived 

from the general formula for the average hydrodynamic forces acting on 

a ship, established in [7] using the theorem of change of momentum. 'lhis 

formula, applicable to the plane problem, has this form 

Because when y + * = @ (y, z, tl = Q (y, 0, t)exp(- VZ), the pre- 

ceding formula is considerably simplified: 

ti the basis of an asymptotic correlation (1.31 for the function Cp(y, 

01, we find the following general expression 

(3.6) 

In the problem under review, as is evident from (1.151, B_ = - B+, 

and thus we obtain (3.5) from (3.6). 

To urork out M*from formula (3.4) we will first of all use the equa- 

tion a+/az = - ~++r, and then insert the value of c$+ from (1.20) into 
(3.4) and integrate by parts. After this we obtain 
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J$*-; pjrO Re B, + f psro Im r ~r+e--+~ dz (3.7) 
0 

'Ihe second integral in (3.71 can, with the aid of (1.161, be re- 
presented thus : 

T 

f 

r7 

zr+e--=dz = APIA + ; BTSIB f CPIc (34 
0 

where IA, I, and I, denote the following 

IA=sO(- FL) - sl(- II), IE = + + (I + $)S,(-t*)-22s,(-_P)+ $ So-l (--fL) 

Ic=~f(f+~)SO(LP)-3(~-t~)S,(--B) 

1 e-w 

so-1(--p)= \uv&a du = --SS,(--P)dy 

0 0 

It follows from formulas (1.8) and (1.111 that at point x = 7’ the 
velocity of the particles of liquid, in general, becomes infinite, and 

in the neighborhood of this point the velocity function is as follows: 

dw 
-ejat =i 
dx 

A + z BT + $ CP) ej”t + F(z) ejal 

where the function F(x) remains finite at x = T. 

‘lhe presence of the infinite velocity, or in practice, very high velo- 
city, demonstrates that in the neighborhood of the point x = T, there is 

a low pressure region, as a result of which the liquid will act as a con- 

centrated suction force downward. lhe magnitude of this force is deter- 
mined by the formula [ 21 : 

z = -PK[(Z - T)(gej”f)2]_T 

From this formula and from the rule in (3.3) we arrive at the follow- 
ing expression for the mean value of the suction force. 

Z:= ~~T~A+~BT~_~cTPI (3.20) 

‘Ihe expressions derived in this paper allow mean values of hydrodynamic 
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forces to be calculated for practical cases. h&n values of the rise of 

the free surface of the liquid can also be evaluated in quadratic approxi- 

mation from the general formulas quoted in [ 71 (also in [ 6’1). 

Similar calculations of the basic characteristics of waves and hydro- 

dynamic forces for the case of pure diffraction can be found in [ 13 . 
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